
Chapter 12

Design of a Digital Communication
System

The power of digital signal processing can probably be best appreciated in
the enormous progresses which have been made in the field of telecom-
munications. These progresses stem from three main properties of digital
processing:

• The flexibility and power of discrete-time processing techniques,
which allow for the low-cost deployment of sophisticated and, more
importantly, adaptive equalization and filtering modules.

• The ease of integration between low-level digital processing and high-
level information-theoretical techniques which counteract transmis-
sion errors.

• The regenerability of a digital signal: in the necessary amplification
of analog signals after transmission, the noise floor is amplified as
well, thereby limiting the processing gain. Digital signals, on the other
hand, can be exactly regenerated under reasonable SNR conditions
(Fig. 1.10).

The fruits of such powerful communication systems are readily enjoyable
in everyday life and it suffices here to mention the fast ADSL connections
which take the power of high data rates into the home. ADSL is actually a
quantitative evolution of a humbler, yet extraordinarily useful device: the
voiceband modem. Voiceband modems, transmitting data at a rate of up to
56 Kbit/sec over standard telephone lines, are arguably the crown achieve-
ment of discrete-time signal processing in the late 90’s and are still the cor-
nerstone of most wired telecommunication devices such as laptops and fax
machines.
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In this Chapter, we explore the design and implementation of a voice-
band modem as a paradigmatic example of applied digital signal process-
ing. In principle, the development of a fully-functional device would require
the use of concepts which are beyond the scope of this book, such as adap-
tive signal processing and information theory. Yet we will see that, if we ne-
glect some of the impairments that are introduced by real-world telephone
lines, we are able to design a working system which will flawlessly modu-
lates and demodulates a data sequence.

12.1 The Communication Channel

A telecommunication system works by exploiting the propagation of elec-
tromagnetic waves in a medium. In the case of radio transmission, the
medium is the electromagnetic spectrum; in the case of land-line communi-
cations such as those in voiceband or ADSL modems, the medium is a cop-
per wire. In all cases, the properties of the medium determine two funda-
mental constraints around which any communication system is designed:

• Bandwith constraint: data transmission systems work best in the fre-
quency range over which the medium behaves linearly; over this pass-
band we can rely on the fact that a signal will be received with only
phase and amplitude distortions, and these are “good” types of dis-
tortion since they amount to a linear filter. Further limitations on the
available bandwidth can be imposed by law or by technical require-
ments and the transmitter must limit its spectral occupancy to the
prescribed frequency region.

• Power constraint: the power of a transmitted signal is inherently lim-
ited by various factors, including the range over which the medium
and the transmission circuitry behaves linearly. In many other cases,
such as in telephone or radio communications, the maximum power
is strictly regulated by law. Also, power could be limited by the ef-
fort to maximize the operating time of battery-powered mobile de-
vices. At the same time, all analog media are affected by noise, which
can come in the form of interference from neighboring transmission
bands (as in the case of radio channels) or of parasitic noise due to
electrical interference (as in the case of AC hum over audio lines). The
noise floor is the noise level which cannot be removed and must be
reckoned with in the transmission scheme. Power constraints limit
the achievable signal to noise ratio (SNR) with respect to the chan-
nel’s noise floor; in turn, the SNR determines the reliability of the data
transmission scheme.
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These constraints define a communication channel and the goal, in the de-
sign of a communication system, is to maximize the amount of information
which can be reliably transmitted across a given channel. In the design of a
digital communication system, the additional goal is to operate entirely in
the discrete-time domain up to the interface with the physical channel; this
means that:

• at the transmitter, the signal is synthesized, shaped and modulated
in the discrete-time domain and is converted to a continuous-time
signal just prior to transmission;

• at the receiver, the incoming signal is sampled from the channel and
demodulation, processing and decoding is performed in the digital
domain.

12.1.1 The AM Radio Channel

A classic example of a regulated electromagnetic channel is commercial ra-
dio. Bandwidth constraints in the case of the electromagnetic spectrum
are rigorously put in place because the spectrum is a scarce resource which
needs to be shared amongst a multitude of users (commercial radio, ama-
teur radio, cellular telephony, emergency services, military use, etc). Power
constraints on radio emissions are imposed for human safety concerns. The
AM band, for instance, extends from 530 kHz to 1700 kHz; each radio sta-
tion is allotted an 8 kHz frequency slot in this range. Suppose that a speech
signal x (t ), obtained with a microphone, is to be transmitted over a slot ex-
tending from f min = 650 kHz to f max = 658 kHz. Human speech can be
modeled as a bandlimited signal with a frequency support of approximately
12 kHz; speech can, however, be filtered through a lowpass filter with cut-
off frequency 4 kHz with little loss of intelligibility so that its bandwidth can
be made to match the 8 kHz bandwidth of the AM channel. The filtered
signal now has a spectrum extending from −4 kHz to 4 kHz; multiplication
by a sinusoid at frequency f c = (f max + f min)/2 = 654 KHz shifts its sup-
port according to the continuous-time version of the modulation theorem:

if x (t )
FT←→X (jΩ) then:

x (t )cos(Ωc t )
FT←→ 1

2

�
X (jΩ− jΩc )+X (jΩ+ jΩc )

	
(12.1)

where Ωc = 2π f c . This is, of course, a completely analog transmission sys-
tem, which is schematically displayed in Figure 12.1.
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Figure 12.1 A simple AM radio transmitter.

12.1.2 The Telephone Channel

The telephone channel is basically a copper wire connecting two users. Be-
cause of the enormous number of telephone posts in the world, only a rel-
atively small number of wires is used and the wires are switched between
users when a call is made. The telephone network (also known as POTS, an
acronym for “Plain Old Telephone System”) is represented schematically in
Figure 12.2. Each physical telephone is connected via a twisted pair (i.e. a
pair of plain copper wires) to the nearest central office (CO); there are a lot
of central offices in the network so that each telephone is usually no more
than a few kilometers away. Central offices are connected to each other via
the main lines in the network and the digits dialed by a caller are interpreted
by the CO as connection instruction to the CO associated to the called num-
ber.

CO Network CO

Figure 12.2 The Plain Old Telephone System (POTS).

To understand the limitations of the telephone channel we have to step
back to the old analog times when COs were made of electromechanical
switches and the voice signals traveling inside the network were boosted
with simple operational amplifiers. The first link of the chain, the twisted
pair to the central office, actually has a bandwidth of several MHz since it
is just a copper wire (this is the main technical fact behind ADSL, by the
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way). Telephone companies, however, used to introduce what are called
loading coils in the line to compensate for the attenuation introduced by
the capacitive effects of longer wires in the network. A side effect of these
coils was to turn the first link into a lowpass filter with a cutoff frequency of
approximately 4 kHz so that, in practice, the official passband of the tele-
phone channel is limited between f min = 300 Hz and f max = 3000 Hz, for a
total usable positive bandwidth W = 2700 Hz. While today most of the net-
work is actually digital, the official bandwidth remains in the order of 8 KHz
(i.e. a positive bandwidth of 4 KHz); this is so that many more conversations
can be multiplexed over the same cable or satellite link. The standard sam-
pling rate for a telephone channel is nowadays 8 KHz and the bandwidth
limitations are imposed only by the antialiasing filters at the CO, for a maxi-
mum bandwidth in excess of W = 3400 Hz. The upper and lower ends of the
band are not usable due to possible great attenuations which may take place
in the transmission. In particular, telephone lines exhibit a sharp notch at
f = 0 (also known as DC level) so that any transmission scheme will have to
use bandpass signals exclusively.

The telephone channel is power limited as well, of course, since tele-
phone companies are quite protective of their equipment. Generally, the
limit on signaling over a line is 0.2 V rms; the interesting figure however
is not the maximum signaling level but the overall signal-to-noise ratio of
the line (i.e. the amount of unavoidable noise on the line with respect to
the maximum signaling level). Nowadays, phone lines are extremely high-
quality: a SNR of at least 28 dB can be assumed in all cases and one of 32-
34 dB can be reasonably expected on a large percentage of individual con-
nections.

12.2 Modem Design: The Transmitter

Data transmission over a physical medium is by definition analog; modern
communication systems, however, place all of the processing in the digital
domain so that the only interface with the medium is the final D/A converter
at the end of the processing chain, following the signal processing paradigm
of Section 9.7.

12.2.1 Digital Modulation and the Bandwidth Constraint

In order to develop a digital communication system over the telephone
channel, we need to re-cast the problem in the discrete-time domain. To
this end, it is helpful to consider a very abstract view of the data transmitter,
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Figure 12.3 Abstract view of a digital transmitter.

as shown in Figure 12.3. Here, we neglect the details associated to the dig-
ital modulation process and concentrate on the digital-to-analog interface,
represented in the picture by the interpolator I (t ); the input to the trans-
mitter is some generic binary data, represented as a bit stream. The band-
width constraints imposed by the channel can be represented graphically
as in Figure 12.4. In order to produce a signal which “sits” in the prescribed
frequency band, we need to use a D/A converter working at a frequency
Fs ≥ 2f max. Once the interpolation frequency is chosen (and we will see
momentarily the criteria to do so), the requirements for the discrete-time
signal s [n ] are set. The bandwidth requirements become simply

ωmin,max = 2π
f min,max

Fs

and they can be represented as in Figure 12.5 (in the figure, for instance, we
have chosen Fs = 2.28 f max).

bandwidth constraint

power constraint

0 Ff min f max Fs

Figure 12.4 Analog specifications (positive frequencies) for the transmitter.

We can now try to understand how to build a suitable s [n ] by looking
more in detail into the input side of the transmitter, as shown in Figure 12.6.
The input bitstream is first processed by a scrambler, whose purpose is to
randomize the data; clearly, it is a pseudo-randomization since this opera-
tion needs to be undone algorithmically at the receiver. Please note how the
implementation of the transmitter in the digital domain allows for a seam-
less integration between the transmission scheme and more abstract data
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Figure 12.5 Discrete-time specifications (positive frequencies) for Fs = 2.28 f max.

manipulation algorithms such as randomizers. The randomized bitstream
could already be transmitted at this point; in this case, we would be imple-
menting a binary modulation scheme in which the signal s [n ] varies be-
tween the two levels associated to a zero and a one, much in the fashion of
telegraphic communications of yore. Digital communication devices, how-
ever, allow for a much more efficient utilization of the available bandwidth
via the implementation of multilevel signaling. With this strategy, the bit-
stream is segmented in consecutive groups of M bits and these bits select
one of 2M possible signaling values; the set of all possible signaling values
is called the alphabet of the transmission scheme and the algorithm which
associates a group of M bits to an alphabet symbol is called the mapper. We
will discuss practical alphabets momentarily; however, it is important to re-
mark that the series of symbols can be complex so that all the signals in the
processing chain up to the final D/A converter are complex signals.

..01100
01010...

Scrambler Mapper

Modulator I (t ) s (t )
s [n ]

Figure 12.6 Data stream processing detail.

Spectral Properties of the Symbol Sequence. The mapper produces
a sequence of symbols a [n ] which is the actual discrete-time signal which
we need to transmit. In order to appreciate the spectral properties of this se-
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quence consider that, if the initial binary bitstream is a maximum-inform-
ation sequence (i.e. if the distribution of zeros and ones looks random and
“fifty-fifty”), and with the scrambler appropriately randomizing the input
bitstream, the sequence of symbols a [n ] can be modeled as a stochastic
i.i.d. process distributed over the alphabet. Under these circumstances, the
power spectral density of the random signal a [n ] is simply

PA (e jω) =σ2
A

whereσA depends on the design of the alphabet and on its distribution.

Choice of Interpolation Rate. We are now ready to determine a suit-
able rate Fs for the final interpolator. The signal a [n ] is a baseband, fullband
signal in the sense that it is centered around zero and its power spectral den-
sity is nonzero over the entire [−π,π] interval. If interpolated at Fs , such a
signal gives rise to an analog signal with nonzero spectral power over the
entire [−Fs/2, Fs /2] interval (and, in particular, nonzero power at DC level).
In order to fulfill the channel’s constraints, we need to produce a signal with
a bandwidth ofωw =ωmax−ωmin centered aroundωc =±(ωmax+ωmin)/2.
The “trick” is to upsample (and interpolate) the sequence a [n ], in order to
narrow its spectral support.(1) Assuming ideal discrete-time interpolators,
an upsampling factor of 2, for instance, produces a half-band signal; an up-
sampling factor of 3 produces a signal with a support spanning one third of
the total band, and so on. In the general case, we need to choose an upsam-
pling factor K so that:

2π

K
≤ωw

Maximum efficiency occurs when the available bandwidth is entirely occu-
pied by the signal, i.e. when K = 2π/ωw . In terms of the analog bandwidth
requirements, this translates to

K =
Fs

f w
(12.2)

where f w = f max− f min is the effective positive bandwidth of the transmitted
signal; since K must be an integer, the previous condition implies that we
must choose an interpolation frequency which is a multiple of the positive

(1)A rigorous mathematical analysis of multirate processing of stochastic signals turns out
to be rather delicate and beyond the scope of this book; the same holds for the effects of
modulation, which will appear later on. Whenever in doubt, we may simply visualize the
involved signals as a deterministic realization whose spectral shape mimics the power
spectral density of their generating stochastic process.
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passband width f w . The two criteria which must be fulfilled for optimal
signaling are therefore:�

Fs ≥ 2f max

Fs = K f w K ∈� (12.3)

..01100
01010...

Scrambler Mapper K ↑
a [n ]

G (z ) × Re I (t ) s (t )

e jωc n

b [n ] c [n ] s [n ]

Figure 12.7 Complete digital transmitter.

The Baseband Signal. The upsampling by K operation, used to nar-
row the spectral occupancy of the symbol sequence to the prescribed band-
width, must be followed by a lowpass filter, to remove the multiple copies of
the upsampled spectrum; this is achieved by a lowpass filter which, in dig-
ital communication parlance, is known as the shaper since it determines
the time domain shape of the transmitted symbols. We know from Sec-
tion 11.2.1 that, ideally, we should use a sinc filter to perfectly remove all
repeated copies. Since this is clearly not possible, let us now examine the
properties that a practical discrete-time interpolator should possess in the
context of data communications. The baseband signal b [n ] can be expressed
as

b [n ] =
∑
m

a K U [m ] g [n −m ]

where a K U [n ] is the upsampled symbol sequence and g [n ] is the lowpass
filter’s impulse response. Since a K U [n ] = 0 for n not a multiple of K , we can
state that:

b [n ] =
∑

i

a [i ] g [n − i K ] (12.4)

It is reasonable to impose that, at multiples of K , the upsampled sequence
b [n ] takes on the exact symbol value, i.e. b [m K ] = a [m ]; this translates to
the following requirement for the lowpass filter:

g [m K ] =

�
1 m = 0

0 m �= 0
(12.5)
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This is nothing but the classical interpolation property which we saw in Sec-
tion 9.4.1. For realizable filters, this condition implies that the minimum fre-
quency support of G (e jω) cannot be smaller than [−π/K ,π/K ].(2) In other
words, there will always be a (controllable) amount of frequency leakage out-
side of a prescribed band with respect to an ideal filter.

To exactly fullfill (12.5), we need to use an FIR lowpass filter; FIR ap-
proximations to a sinc filter are, however, very poor, since the impulse re-
sponse of the sinc decays very slowly. A much friendlier lowpass charac-
teristic which possesses the interpolation property and allows for a precise
quantification of frequency leakage, is the raised cosine. A raised cosine with
nominal bandwidth ωw (and therefore with nominal cutoff ωb = ωw /2) is
defined over the positive frequency axis as

G (e jω) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if 0<ω< (1−β )ωb

0 if (1+β )ωb <ω<π
1

2
+

1

2
cos

�
π
ω− (1−β )ωb

2βωb

�
if (1−β )ωb <ω< (1+β )ωb

(12.6)

and is symmetric around the origin. The parameter β , with 0 < β < 1, ex-
actly defines the amount of frequency leakage as a percentage of the pass-
band. The closer β is to one, the sharper the magnitude response; a set of
frequency responses forωb =π/2 and various values of β are shown in Fig-
ure 12.8. The raised cosine is still an ideal filter but it can be shown that its

0 π-π

0

1

Figure 12.8 Frequency responses of a half-band raised-cosine filter for increasing
values of β : from black to light gray, β = 0.1, β = 0.2, β = 0.4, β = 0.9.

(2)A simple proof of this fact can be outlined using multirate signal processing. Assume
the spectrum G (e jω) is nonzero only over [−ωb ,ωb ], forωb < π/K ; g [n] can therefore
be subsampled by at least a factor of K without aliasing, and the support of the resulting
spectrum is going to be [−Kωb , Kωb ], with Kωb < π. However, g [K n] = δ[n], whose
spectral support is [−π,π].
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impulse response decays as 1/n 3 and, therefore, good FIR approximations
can be obtained with a reasonable amount of taps using a specialized ver-
sion of Parks-McClellan algorithm. The number of taps needed to achieve a
good frequency response obviously increases as β approaches one; in most
practical applications, however, it rarely exceeds 50.

The Bandpass Signal. The filtered signal b [n ] = g [n ] ∗ a K U [n ] is now a
baseband signal with total bandwidth ωw . In order to shift the signal into
the allotted frequency band, we need to modulate(3) it with a sinusoidal car-
rier to obtain a complex bandpass signal:

c [n ] = b [n ]e jωc n

where the modulation frequency is the center-band frequency:

ωc =
ωmin+ωmax

2

Note that the spectral support of the modulated signal is just the positive
interval [ωmin,ωmax]; a complex signal with such a one-sided spectral occu-
pancy is called an analytic signal. The signal which is fed to the D/A con-
verter is simply the real part of the complex bandpass signal:

s [n ] =Re
�

c [n ]
�

(12.7)

If the baseband signal b [n ] is real, then (12.7) is equivalent to a standard
cosine modulation as in (12.1); in the case of a complex b [n ] (as in our case),
the bandpass signal is the combination of a cosine and a sine modulation,
which we will examine in more detail later. The spectral characteristics of
the signals involved in the creation of s [n ] are shown in Figure 12.9.

Baud Rate vs Bit Rate. The baud rate of a communication system is the
number of symbols which can be transmitted in one second. Considering
that the interpolator works at Fs samples per second and that, because of
upsampling, there are exactly K samples per symbol in the signal s [n ], the
baud rate of the system is

B =
Fs

K
= f w (12.8)

where we have assumed that the shaper G (z ) is an ideal lowpass. As a gen-
eral rule, the baud rate is always smaller or equal to the positive passband
of the channel. Moreover, if we follow the normal processing order, we can

(3)See footnote (1).
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0 π-π ωmin ωmaxωc−ωc

0 π-π ωmin ωmaxωc−ωc

0 π-π ωmin ωmaxωc−ωc

Figure 12.9 Construction of the modulated signal: PSD of the symbol sequence
a [n ] (top panel); PSD of the upsampled and shaped signal b [n ] (middle panel);
PSD of the real modulated signal s [n ] (bottom panel). The channel’s bandwidth
requirements are indicated by the dashed areas.

equivalently say that a symbol sequence generated at B symbols per second
gives rise to a modulated signal whose positive passband is no smaller than
B Hz. The effective bandwidth f w depends on the modulation scheme and,
especially, on the frequency leakage introduced by the shaper.
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The total bit rate of a transmission system, on the other hand, is at most
the baud rate times the log in base 2 of the number of symbols in the alpha-
bet; for a mapper which operates on M bits per symbol, the overall bitrate
is

R =M B (12.9)

A Design Example. As a practical example, consider the case of a tele-
phone line for which f min = 450 Hz and f max = 3150 Hz (we will consider
the power constraints later). The baud rate can be at most 2700 symbols per
second, since f w = f max − f min = 2700 Hz. We choose a factor β = 0.125 for
the raised cosine shaper and, to compensate for the bandwidth expansion,
we deliberately reduce the actual baud rate to B = 2700/(1+β ) = 2400 sym-
bols per second, which leaves the effective positive bandwidth equal to f w .
The criteria which the interpolation frequency must fulfill are therefore the
following:�

Fs ≥ 2f max = 6300

Fs = K B = 2400 K K ∈�
The first solution is for K = 3 and therefore Fs = 7200. With this inter-
polation frequency, the effective bandwidth of the discrete-time signal is
ωw = 2π(2700/7200) = 0.75π and the carrier frequency for the bandpass
signal is ωc = 2π(450+ 3150)/(2Fs ) = π/2. In order to determine the maxi-
mum attainable bitrate of this system, we need to address the second major
constraint which affects the design of the transmitter, i.e. the power con-
straint.

12.2.2 Signaling Alphabets and the Power Constraint

The purpose of the mapper is to associate to each group of M input bits a
value α from a given alphabet� . We assume that the mapper includes a
multiplicative factor G0 which can be used to set the final gain of the gen-
erated signal, so that we don’t need to concern ourselves with the absolute
values of the symbols in the alphabet; the symbol sequence is therefore:

a [n ] =G0α[n ], α[n ]∈�
and, in general, the values α are set at integer coordinates out of conve-
nience.

Transmitted Power. Under the above assumption of an i.i.d. uniformly
distributed binary input sequence, each group of M bits is equally probable;
since we consider only memoryless mappers, i.e. mappers in which no de-
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pendency between symbols is introduced, the mapper acts as the source of
a random process a [n ]which is also i.i.d. The power of the output sequence
can be expressed as

σ2
a = E

��a [n ]��2
=G 2

0

∑
α∈�

��α��2pa (α) (12.10)

=G 2
0σ

2
α (12.11)

where pa (α) is the probability assigned by the mapper to symbol α ∈ � ;
the distribution over the alphabet� is one of the design parameters of the
mapper, and is not necessarily uniform. The variance σ2

α is the intrinsic
power of the alphabet and it depends on the alphabet size (it increases ex-
ponentially with M ), on the alphabet structure, and on the probability dis-
tribution of the symbols in the alphabet. Note that, in order to avoid wast-
ing transmission energy, communication systems are designed so that the
sequence generated by the mapper is balanced, i.e. its DC value is zero:

E[α[n ]]=
∑
α∈�
αpa (α) = 0

Using (8.25), the power of the transmitted signal, after upsampling and mod-
ulation, is

σ2
s =

1

π

∫ ωmax

ωmin

1

2

��G (e jω)
��2G 2

0σ
2
α (12.12)

The shaper is designed so that its overall energy over the passband is G 2 =
2π and we can express this as follows:

σ2
s =G 2

0σ
2
α (12.13)

In order to respect the power constraint, we have to choose a value for G0

and design an alphabet� so that:

σ2
s ≤ Pmax (12.14)

where Pmax is the maximum transmission power allowed on the channel.
The goal of a data transmission system is to maximize the reliable through-
put but, unfortunately, in this respect the parameters σ2

α and G0 act upon
conflicting priorities. If we use (12.9) and boost the transmitter’s bitrate by
increasing M , then σ2

α grows and we must necessarily reduce the gain G0

to fulfill the power constraint; but, in so doing, we impair the reliability of
the transmission. To understand why that is, we must leap ahead and con-
sider both a practical alphabet and the mechanics of symbol decoding at the
transmitter.
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QAM. The simplest mapping strategies are one-to-one correspondences
between binary values and signal values: note that in these cases the sym-
bol sequence is uniformly distributed with pa (α) = 2−M for all α ∈ � . For
example, we can assign to each group of M bits (b0, . . . ,bM−1) the signed bi-
nary number b0b1b2 · · ·bM−1 which is a value between −2M−1 and 2M−1 (b0

is the sign bit). This signaling scheme is called pulse amplitude modula-
tion (PAM) since the amplitude of each transmitted symbol is directly deter-
mined by the binary input value. The PAM alphabet is clearly balanced and
the inherent power of the mapper’s output is readily computed as(4)

σ2
α =

2M−1∑
α=1

2−Mα2 =
2M (2M + 3)+ 2

24

Now, a pulse-amplitude modulated signal prior to modulation is a base-
band signal with positive bandwidth of, say, ω0 (see Figure 12.9, middle
panel); therefore, the total spectral support of the baseband PAM signal is
2ω0. After modulation, the total spectral support of the signal actually dou-
bles (Fig. 12.9, bottom panel); there is, therefore, some sort of redundancy
in the modulated signal which causes an underutilization of the available
bandwidth. The original spectral efficiency can be regained with a signaling
scheme called quadrature amplitude modulation (QAM); in QAM the sym-
bols in the alphabet are complex quantities, so that two real values are trans-
mitted simultaneously at each symbol interval. Consider a complex symbol
sequence

a [n ] =G0
�
αI [n ]+ j αQ [n ]

�
= a I [n ]+ j aQ [n ]

Since the shaper is a real-valued filter, we have that:

b [n ] =
�

a I ,K U ∗ g [n ]
�
+ j
�

aQ ,K U ∗ g [n ]
�
= bI [n ]+ j bQ [n ]

so that, finally, (12.7) becomes:

s [n ] =Re
�

b [n ]e jωc n
�

=b I [n ]cos(ωc n )−bQ [n ]sin(ωc n )

In other words, a QAM signal is simply the linear combination of two pulse-
amplitude modulated signals: a cosine carrier modulated by the real part of
the symbol sequence and a sine carrier modulated by the imaginary part of
the symbol sequence. The sine and cosine carriers are orthogonal signals,
so that b I [n ] and bQ [n ] can be exactly separated at the receiver via a sub-
space projection operation, as we will see in detail later. The subscripts I

(4)A useful formula, here and in the following, is
∑N

n=1 n 2 =N (N +1)(2N +1)/6.
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and Q derive from the historical names for the cosine carrier (the in-phase
carrier) and the sine carrier which is the quadrature (i.e. the orthogonal car-
rier). Using complex symbols for the description of the internal signals in
the transmitter is an abstraction which simplifies the overall notation and
highlights the usefulness of complex discrete-time signal models.

1

2

3

4

-1

-2

-3

-4

1 2 3 4-1-2-3-4 Re

Im

Figure 12.10 16-point QAM constellations (M = 4).

Constellations. The 2M symbols in the alphabet can be represented as
points in the complex plane and the geometrical arrangement of all such
points is called the signaling constellation. The simplest constellations are
upright square lattices with points on the odd integer coordinates; for M
even, the 2M constellation points αhk form a square shape with 2M/2 points
per side:

αhk = (2h − 1)+ j (2k − 1), −2M/2−1 < h,k ≤ 2M/2−1
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Such square constellations are called regular and a detailed example is
shown in Figure 12.10 for M = 4; other examples for M = 2,6,8 are shown
in Figure 12.11. The nominal power associated to a regular, uniformly dis-
tributed constellation on the square lattice can be computed as the second
moment of the points; exploiting the fourfold symmetry, we have

σ2
α = 4

2M/2−1∑
h=1

2M/2−1∑
k=1

2−M

�

2h − 1
�2+

�
2k − 1

�2�
=

2

3
(2M − 1) (12.15)

Square-lattice constellations exist also for alphabet sizes which are not per-
fect squares and examples are shown in Figure 12.12 for M = 3 (8-point con-
stellation) and M = 5 (32-point). Alternatively, constellations can be defined
on other types of lattices, either irregular or regular; Figure 12.13 shows an
alternative example of an 8-point constellation defined on an irregular grid
and a 19-point constellation defined over a regular hexagonal lattice. We
will see later how to exploit the constellation’s geometry to increase perfor-
mance.

Re

Im

Re

Im

Re

Im

Figure 12.11 4-, 64- and 256-point QAM constellations (M bits/symbol for M = 2,
M = 6, M = 8) respectively.
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Im

Re

Im

Figure 12.12 8- and 32-point square-lattice constellations.



344 Modem Design: The Transmitter

Re

Im

Re

Im

Figure 12.13 More exotic constellations: irregular low-power 8-point constellation
(left panel) in which the outer point are at a distance of 1+

�
3 from the origin ;

regular 19-point hexagonal-lattice constellation (right panel).

Transmission Reliability. Let us assume that the receiver has eliminated
all the “fixable” distortions introduced by the channel so that an “almost
exact” copy of the symbol sequence is available for decoding; call this se-
quence â [n ]. What no receiver can do, however, is eliminate all the additive
noise introduced by the channel so that:

â [n ] = a [n ]+η[n ] (12.16)

where η[n ] is a complex white Gaussian noise term. It will be clear later why
the internal mechanics of the receiver make it easier to consider a complex
representation for the noise; again, such complex representation is a conve-
nient abstraction which greatly simplifies the mathematical analysis of the
decoding process. The real-valued zero-mean Gaussian noise introduced by
the channel, whose variance is σ2

0, is transformed by the receiver into com-
plex Gaussian noise whose real and imaginary parts are independent zero-
mean Gaussian variables with variance σ2

0/2. Each complex noise sample
η[n ] is distributed according to

fη(z ) =
1

πσ2
0

e
− |z |2
σ2

0 (12.17)

The magnitude of the noise samples introduces a shift in the complex
plane for the demodulated symbols â [n ]with respect to the originally trans-
mitted symbols; if this displacement is too big, a decoding error takes place.
In order to quantify the effects of the noise we have to look more in detail
at the way the transmitted sequence is retrieved at the receiver. A bound
on the probability of error can be obtained analytically if we consider a sim-
ple QAM decoding technique called hard slicing. In hard slicing, a value
â [n ] is associated to the most probable symbol α ∈ � by choosing the al-
phabet symbol at the minimum Euclidean distance (taking the gain G0 into
account):
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��â [n ]
�
= arg min

α∈�
���â [n ]−G0α

��2�
The hard slicer partitions the complex plane into decision regions centered
on alphabet symbols; all the received values which fall into the decision re-
gion centered on α are mapped back onto α. Decision regions for a 16-point
constellation, together with examples of correct and incorrect hard slicing
are represented in Figure 12.14: when the error sample η[n ] moves the re-
ceived symbol outside of the right decision region, we have a decoding er-
ror. For square-lattice constellations, this happens when either the real or
the imaginary part of the noise sample is larger than the minimum distance
between a symbol and the closest decision region boundary. Said distance
is d min =G0, as can be easily seen from Figure 12.10, and therefore the prob-
ability of error at the receiver is

pe = 1−P
��

Re
�
η[n ]

�
<G0

�
∧
�

Im
�
η[n ]

�
<G0

�

= 1−

∫
D

fη(z )d z
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Figure 12.14 Decoding of noisy symbols: transmitted symbol is black dot, received
value is the star. Correct decoding (left) and decoding error (right).

where fη(x ) is the pdf of the additive complex noise and D is a square on
the complex plane centered at the origin and 2d min wide. We can obtain
a closed-form expression for the probability of error if we approximate the
decision region D by the inscribed circle of radius d min (Fig. 12.15), so:

pe = 1−
∫
|z |<G0

fη(z )d z

= 1−
∫ 2π

0

dθ

∫ G0

0

ρ

πσ2
0

e
− ρ2

σ2
0

= e
−G 2

0
σ2

0 (12.18)
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where we have used (12.17) and the change of variable z =ρ e j θ . The prob-
ability of error decreases exponentially with the gain and, therefore, with the
power of the transmitter.

G0

�� �� ��

�� ��

�� �� ��

Figure 12.15 Decision region and its circular approximation.

The concept of “reliability” is quantified by the probability of error that
we are willing to tolerate; note that this probability can never be zero, but
it can be made arbitrarily low – values on the order of pe = 10−6 are usually
taken as a reference. Assume that the transmitter transmits at the maxi-
mum permissible power so that the SNR on the channel is maximized. Un-
der these conditions it is

SNR=
σ2

s

σ2
0

=G 2
0

σ2
α

σ2
0

and from (12.18) we have

SNR=− ln(pe )σ2
α (12.19)

For a regular square-lattice constellation we can use (12.15) to determine
the maximum number of bits per symbol which can be transmitted at the
given reliability figure:

M = log2

�
1− 3

2

SNR

ln(pe )

�
(12.20)
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and this is how the power constraint ultimately affects the maximum achiev-
able bitrate. Note that the above derivation has been carried out with very
specific hypotheses on both the signaling alphabet and on the decoding al-
gorithm (the hard slicing); the upper bound on the achievable rate on the
channel is actually a classic result of information theory and is known un-
der the name of Shannon’s capacity formula. Shannon’s formula reads

C = B log2

�
1+

S

N

�
where C is the absolute maximum capacity in bits per second, B is the avail-
able bandwidth in Hertz and S/N is the signal to noise ratio.

Design Example Revisited. Let us resume the example on page 339 by
assuming that the power constraint on the telephone line limits the max-
imum achievable SNR to 22 dB. If the acceptable bit error probability is
pe = 10−6, Equation (12.20) gives us a maximum integer value of M = 4 bits
per symbol. We can therefore use a regular 16-point square constellation;
recall we had designed a system with a baud rate of 2400 symbols per sec-
ond and therefore the final reliable bitrate is R = 9600 bits per second. This
is actually one of the operating modes of the V.32 ITU-T modem standard.(5)

12.3 Modem Design: The Receiver

The analog signal s (t ) created at the transmitter is sent over the telephone
channel and arrives at the receiver as a distorted and noise-corrupted signal
ŝ (t ). Again, since we are designing a purely digital communication system,
the receiver’s input interface is an A/D converter which, for simplicity, we
assume, is operating at the same frequency Fs as the transmitter’s D/A con-
verter. The receiver tries to undo the impairments introduced by the chan-
nel and to demodulate the received signal; its output is a binary sequence
which, in the absence of decoding errors, is identical to the sequence in-
jected into the transmitter; an abstract view of the receiver is shown in Fig-
ure 12.16.

ŝ (t ) RX
..01100
01010...

Fs

ŝ [n ]

Figure 12.16 Abstract view of a digital receiver.

(5)ITU-T is the Standardization Bureau of the International Telecommunication Union.
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12.3.1 Hilbert Demodulation

Let us assume for the time being that transmitter and receiver are connected
back-to-back so that we can neglect the effects of the channel; in this case
ŝ (t ) = s (t ) and, after the A/D module, ŝ [n ] = s [n ]. Demodulation of the
incoming signal to a binary data stream is achieved according to the block
diagram in Figure 12.17 where all the steps in the modulation process are
undone, one by one.

H (z ) e−jωc n

ŝ (t ) � + ×

j

ŝ [n ] ĉ [n ] b̂ [n ]

K ↓ Slicer Descrambler
..01100
01010...

â [n ]

Figure 12.17 Complete digital receiver.

The first operation is retrieving the complex bandpass signal ĉ [n ] from
the real signal ŝ [n ]. An efficient way to perform this operation is by ex-
ploiting the fact that the original c [n ] is an analytic signal and, therefore,
its imaginary part is completely determined by its real part. To see this,
consider a complex analytic signal x [n ], i.e. a complex sequence for which
X (e jω) = 0 over the [−π,0] interval (with the usual 2π-periodicity, obvi-
ously). We can split x [n ] into real and imaginary parts:

x [n ] = xr [n ]+ j xi [n ]

so that we can write:

xr [n ] =
x [n ]+x ∗[n ]

2

xi [n ] =
x [n ]−x ∗[n ]

2
j

In the frequency domain, these relations translate to (see (4.46)):

Xr (e jω) =
�

X (e jω)+X ∗(e−jω)
	

2
(12.21)

Xi (e jω) =
�

X (e jω)−X ∗(e−jω)
	

2
j (12.22)
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0 π-π

0

1

0 π-π

0

1

Figure 12.18 Magnitude spectrum of an analytic signal x [n ].
��X ∗(e−jω)

�� (left) and��X ∗(e−jω)
�� (right).

Since x [n ] is analytic, by definition X (e jω) = 0 for −π≤ω< 0, X ∗(e−jω) = 0
for 0<ω≤π and X (e jω) does not overlap with X ∗(e−jω) (Fig. 12.18). We can
therefore use (12.21) to write:

X (e jω) =

�
2Xr (e jω) for 0≤ω≤π
0 for−π<ω< 0

(12.23)

Now, xr [n ] is a real sequence and therefore its Fourier transform is conjugate-
symmetric, i.e. Xr (e jω) = X ∗r (e−jω); as a consequence

X ∗(e−jω) =

�
0 for 0≤ω≤π
2Xr (e jω) for−π<ω< 0

(12.24)

By using (12.23) and (12.24) in (12.22) we finally obtain:

Xi (e jω) =

�−j Xr (e jω) for 0≤ω≤π
+j Xr (e jω) for −π<ω< 0

(12.25)

which is the product of Xr (e jω) with the frequency response of a Hilbert
filter (Sect. 5.6). In the time domain this means that the imaginary part of an
analytic signal can be retrieved from the real part only via the convolution:

xi [n ] = h[n ] ∗xr [n ]

At the demodulator, ŝ [n ] = s [n ] is nothing but the real part of c [n ] and
therefore the analytic bandpass signal is simply

ĉ [n ] = ŝ [n ]+ j
�
h[n ] ∗ ŝ [n ]

�
In practice, the Hilbert filter is approximated with a causal, 2L+ 1-tap type
III FIR, so that the structure used in demodulation is that of Figure 12.19.
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H (z )

ŝ [n ] � + ĉ [n − L]

z−L

j

Figure 12.19 Retrieving the complex baseband signal with an FIR Hilbert filter ap-
proximation.

The delay in the bottom branch compensates for the delay introduced by
the causal filter and puts the real and derived imaginary part back in sync to
obtain:

ĉ [n ] = ŝ [n − L]+ j
�
h[n ] ∗ ŝ [n ]

�
Once the analytic bandpass signal is reconstructed, it can be brought

back to baseband via a complex demodulation with a carrier with frequency
−ωc :

b̂ [n ] = ĉ [n ]e−jωc n

Because of the interpolation property of the pulse shaper, the sequence of
complex symbols can be retrieved by a simple downsampling-by-K opera-
tion:

â [n ] = b̂ [n K ]

Finally, the slicer (which we saw in Section 12.2.2) associates a group of M
bits to each received symbol and the descrambler reconstructs the original
binary stream.

12.3.2 The Effects of the Channel

If we now abandon the convenient back-to-back scenario, we have to deal
with the impairments introduced by the channel and by the signal process-
ing hardware. The telephone channels affects the received signal in three
fundamental ways:

• it adds noise to the signal so that, even in the best case, the signal-to-
noise ratio of the received signal cannot exceed a maximum limit;

• it distorts the signal, acting as a linear filter;

• it delays the signal, according to the propagation time from transmit-
ter to receiver.
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Distortion and delay are obviously both linear transformations and, as such,
their description could be lumped together; still, the techniques which deal
with distortion and delay are different, so that the two are customarily kept
separate. Furthermore, the physical implementation of the devices intro-
duces an unavoidable lack of absolute synchronization between transmit-
ter and receiver, since each of them runs on an independent internal clock.
Adaptive synchronization becomes a necessity in all real-world devices, and
will be described in the next Section.

Noise. The effects of noise have already been described in Section 12.2.2
and can be summed up visually by the plots in Figure 12.20 in each of which
successive values of â [n ] are superimposed on the same axes. The analog
noise is transformed into discrete-time noise by the sampler and, as such,
it leaks through the demodulation chain to the reconstructed symbols se-
quence â [n ]; as the noise level increases (or, equivalently, as the SNR de-
creases) the shape of the received constellation progressively loses its tight-
ness around the nominal alphabet values. As symbols begin to cross the
boundaries of the decision regions, more and more decoding errors, take
place.
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Figure 12.20 Noisy constellation for decreasing SNR.

Equalization. We saw previously that the passband of a communication
channel is determined by the frequency region over which the channel in-
troduces only linear types of distortion. The channel can therefore be mod-
eled as a continuous-time linear filter Dc (jΩ) whose frequency response is
unknown (and potentially time-varying). The received signal (neglecting
noise) is therefore Ŝ(jΩ)=Dc (jΩ)S(jΩ) and, after the sampler, we have

Ŝ(e jω) =D(e jω)S(e jω)

where D(e jω) represents the combined effect of the original channel and of
the anti-aliasing filter at the A/D converter. To counteract the channel dis-
tortion, the receiver includes an adaptive equalizer E (z ) right after the A/D
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converter; this is an FIR filter which is modified on the fly so that E (z ) ≈
1/D(z ). While adaptive filter theory is beyond the scope of this book, the
intuition behind adaptive equalization is shown in Figure 12.21. In fact, the
demodulator contains an exact copy of the modulator as well; if we assume
that the symbols produced by the slicer are error-free, a perfect copy of the
transmitted signal s [n ] can be generated locally at the receiver. The differ-
ence between the equalized signal and the reconstructed original signal is
used to adapt the taps of the equalizer so that:

d [n ] = ŝ e [n ]− s [n ]−→ 0

Clearly, in the absence of a good initial estimate for D(e jω), the sliced val-
ues â [n ] are nothing like the original sequence; this is obviated by having
the transmitter send a pre-established training sequence which is known in
advance at the receiver. The training sequence, together with other syn-
chronization signals, is sent each time a connection is established between
transmitter and receiver and is part of the modem’s handshaking protocol.
By using a training sequence, E (z ) can quickly converge to an approxima-
tion of 1/D(z ) which is good enough for the receiver to start decoding sym-
bols correctly and use them in driving further adaptation.

ŝ [n ] E (z ) � Demod Slicer �

− Modulator

ŝ e [n ] a [n ]

s [n ]
d [n ]

Figure 12.21 Adaptive equalization: based on the estimated symbols the receiver
can synthesize the perfect desired equalizer output and use the difference to drive
the adaptation.

Delay. The continuous-time signal arriving at the receiver can be modeled
as

ŝ (t ) = (s ∗ v )(t − td )+η(t ) (12.26)

where v (t ) is the continuous-time impulse response of the channel, η(t ) is
the continuous-time noise process and td is the propagation delay, i.e. the
time it takes for the signal to travel from transmitter to receiver. After the
sampler, the discrete-time signal to be demodulated is ŝ [n ] = ŝ (nTs ); if we
neglect the noise and distortion, we can write

ŝ [n ] = s (nTs − td ) = s
�
(n −n d )Ts −τTs

�
(12.27)
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where we have split the delay as td = (n d +τ)Ts with n d ∈ � and |τ| ≤ 1/2.
The term n d is called the bulk delay and it can be estimated easily in a full-
duplex system by the following handshaking procedure:

1. System A sends an impulse to system B at time n = 0; the impulse
appears on the channel after a known processing delay tp 1 seconds;
let the (unknown) channel propagation delay be td seconds.

2. System B receives the impulse and sends an impulse back to A; the
processing time tp 2 (decoding of the impulse and generation of re-
sponse) is known by design.

3. The response impulse is received by system A after td seconds (prop-
agation delay is symmetric) and detected after a processing delay of
tp 3 seconds.

In the end, the total round-trip delay measured by system A is

t = 2td + tp 1+ tp 2+ tp 3= 2td + tp

since tp is known exactly in terms of the number of samples, td can be esti-
mated to within a sample. The bulk delay is easily dealt with at the receiver,
since it translated to a simple z−n d component in the channel’s response.
The fractional delay, on the other hand, is a more delicate entity which we
will need to tackle with specialized machinery.

12.4 Adaptive Synchronization

In order for the receiver to properly decode the data, the discrete-time
signals inside the receiver must be synchronous with the discrete-time sig-
nals generated by the transmitter. In the back-to-back operation, we could
neglect synchronization problems since we assumed ŝ [n ] = s [n ]. In reality,
we will need to compensate for the propagation delay and for possible clock
differences between the D/A at the transmitter and the A/D at the receiver,
both in terms of time offsets and in terms of frequency offsets.

12.4.1 Carrier Recovery

Carrier recovery is the modem functionality by which any phase offset be-
tween carriers is estimated and compensated for. Phase offsets between the
transmitter’s and receiver’s carriers are due to the propagation delay and to
the general lack of a reference clock between the two devices. Assume that
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the oscillator in the receiver has a phase offset of θ with respect to the trans-
mitter; when we retrieve the baseband signal b̂ [n ] from ĉ [n ] we have

b̂ [n ] = ĉ [n ]e−j (ωc n−θ ) = c [n ]e−j (ωc n−θ ) = b [n ]e j θ

where we have neglected both distortion and noise and assumed ĉ [n ] =
c [n ]. Such a phase offset translates to a rotation of the constellation points
in the complex plane since, after downsampling, we have â [n ] = a [n ]e j θ .
Visually, the received constellation looks like in Figure 12.22, where θ =
π/20= 9◦. If we look at the decision regions plotted in Figure 12.22, it is clear
that in the rotated constellation some points are shifted closer to the deci-
sion boundaries; for these, a smaller amount of noise is sufficient to cause
slicing errors. An even worse situation happens when the receiver’s carrier
frequency is slightly different than the transmitter’s carrier frequency; in this
case the phase offset changes over time and the points in the constellation
start to rotate with an angular speed equal to the difference between fre-
quencies. In both cases, data transmission becomes highly unreliable: car-
rier recovery is then a fundamental part of modem design.

Re

Im

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

Figure 12.22 Rational effect of a phase offset on the received symbols.

The most common technique for QAM carrier recovery over well-
behaved channels is a decision directed loop; just as in the case of the adap-
tive equalizer, this works when the overall SNR is sufficiently high and the
distortion is mild so that the slicer’s output is an almost error-free sequence
of symbols. Consider a system with a phase offset of θ ; in Figure 12.23 the
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Re

Im

*


a 1


a 2

Figure 12.23 Estimation of the phase offset.

rotated symbol α̂ (indicated by a star) is sufficiently close to the transmitted
value α (indicated by a dot) to be decoded correctly. In the z plane, con-
sider the two vectors 
a 1 and 
a 2, from the origin to α̂ and α respectively; the
magnitude of their vector product can be expressed as��
a 1× 
a 2

��=Re
�
α̂
�

Im
�
α
�− Im

�
α̂
�

Re
�
α
�

(12.28)

Moreover, the angle between the vectors is θ and it can be computed as��
a 1× 
a 2

��= ��
a 1

�� ��
a 2

��sin(θ ) (12.29)

We can therefore obtain an estimate for the phase offset:

sin(θ ) =
Re
�
α̂
�

Im
�
α
�− Im

�
α̂
�

Re
�
α
�

|
a 1| |
a 2| (12.30)

For small angles, we can invoke the approximation sin(θ ) ≈ θ and obtain a
quick estimate of the phase offset. In digital systems, oscillators are realized
using the algorithm we saw in Section 2.1.3; it is easy to modify such a rou-
tine to include a time-varying corrective term derived from the estimate of θ
above so that the resulting phase offset is close to zero. This works also in the
case of a slight frequency offset, with θ converging in this case to a nonzero
constant. The carrier recovery block diagram is shown in Figure 12.24.

This decision-directed feedback method is almost always able to “lock”
the constellation in place; due to the fourfold symmetry of regular square



356 Adaptive Synchronization

constellations, however, there is no guarantee that the final orientation of
the locked pattern be the same as the original. This difficulty is overcome
by a mapping technique called differential encoding; in differential encod-
ing the first two bits of each symbol actually encode the quadrant offset of
the symbol with respect to the previous one, while the remaining bits indi-
cate the actual point within the quadrant. In so doing, the encoded symbol
sequence becomes independent of the constellation’s absolute orientation.

ŝ [n ] E (z ) Demod � Slicer �

e jωc n −

â [n ] a [n ]

Figure 12.24 Carrier recovery by decision-directed loop.

12.4.2 Timing Recovery

Timing recovery is the ensemble of strategies which are put in place to re-
cover the synchronism between transmitter and receiver at the level of
discrete-time samples. This synchronism, which was one of the assump-
tions of back-to-back operation, is lost in real-world situations because of
propagation delays and because of slight hardware differences between de-
vices. The D/A and A/D, being physically separate, run on independent
clocks which may exhibit small frequency differences and a slow drift. The
purpose of timing recovery is to offset such hardware discrepancies in the
discrete-time domain.

A Digital PLL. Traditionally, a Phase-Locked-Loop (PLL) is an analog cir-
cuit which, using a negative feedback loop, manages to keep an internal os-
cillator “locked in phase” with an external oscillatory input. Since the in-
ternal oscillator’s parameters can be easily retrieved, PLLs are used to accu-
rately measure the frequency and the phase of an external signal with re-
spect to an internal reference.

In timing recovery, we use a PLL-like structure as in Figure 12.25 to com-
pensate for sampling offsets. To see how this PLL works, assume that the
discrete-time samples ŝ [n ] are obtained by the A/D converter as

ŝ [n ] = ŝ (tn ) (12.31)

where the sequence of sampling instants tn is generated as

tn+1 = tn +T [n ] (12.32)
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sin(2π f 0t +θ ) � sin(2πn/N )

� N ↓
tn

Figure 12.25 A digital PLL with a sinusoidal input.

Normally, the sampling period is a constant and T [n ] = Ts = 1/Fs but here
we will assume that we have a special A/D converter for which the sampling
period can be dynamically changed at each sampling cycle. Assume the in-
put to the sampler is a zero-phase sinusoid of known frequency f 0 = Fs /N
for N ∈� and N ≥ 2:

x (t ) = sin(2π f 0t )

If the sampling period is constant and equal to Ts and if the A/D is syn-
chronous to the sinusoid, the sampled signal are simply:

x [n ] = sin
�2π

N
n
�

We can test such synchronicity by downsampling x [n ] by N and we should
have xN D [n ] = 0 for all n ; this situation is shown at the top of Figure 12.26
and we can say that the A/D is locked to the reference signal x (t ).

If the local clock has a time lag τ with respect to the reference time of
the incoming sinusoid (or, alternatively, if the incoming sinusoid is delayed
by τ), then the discrete-time, downsampled signal is the constant:

xN D [n ] = sin(2π f 0τ) (12.33)

Note, the A/D is still locked to the reference signal x (t ), but it exhibits a
phase offset, as shown in Figure 12.26, middle panel. If this offset is suf-
ficiently small then the small angle approximation for the sine holds and
xN D [n ] provides a direct estimate of the corrective factor which needs to be
injected into the A/D block. If the offset is estimated at time n 0, it will suffice
to set

T [n ] =

�
Ts −τ for n = n 0

Ts for n > n 0
(12.34)

for the A/D to be locked to the input sinusoid.
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Figure 12.26 Timing recovery from a continuous-time sinusoid, with reference
samples drawn as white circles: perfect locking (top); phase offset (middle) and
frequency drift (bottom). All plots are in the time reference of the input sinusoid.

Suppose now that the the A/D converter runs slightly slower than its
nominal speed or, in other words, that the effective sampling frequency is
F ′s = βFs , with β < 1. As a consequence the sampling period is T ′s = Ts/β >

Ts and the discrete-time, downsampled signal becomes

xN D [n ] = sin
�
(2πβ )n

�
(12.35)
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i.e. it is a sinusoid of frequency 2πβ ; this situation is shown in the bottom
panel of Figure 12.26. We can use the downsampled signal to estimate β and
we can re-establish a locked PLL by setting

T [n ] =
Ts

β
(12.36)

The same strategy can be employed if the A/D runs faster than normal, in
which case the only difference is that β > 1.

A Variable Fractional Delay. In practice, A/D converters with “tunable”
sampling instants are rare and expensive because of their design complex-
ity; furthermore, a data path from the discrete-time estimators to the analog
sampler would violate the digital processing paradigm in which all of the
receiver works in discrete time and the one-way interface from the analog
world is the A/D converter. In other words: the structure in Figure 12.25 is
not a truly digital PLL loop; to implement a completely digital PLL structure,
the adjustment of the sampling instants must be performed in discrete time
via the use of a programmable fractional delay.

Let us start with the case of a simple time-lag compensation for a
continuous-time signal x (t ). Of the total delay td , we assume that the bulk
delay has been correctly estimated so that the only necessary compensation
is that of a fractional delay τ, with |τ| ≤ 1/2. From the available sampled sig-
nal x [n ] = x (nTs )we want to obtain the signal

xτ[n ] = x (nTs +τTs ) (12.37)

using discrete-time processing only. Since we will be operating in discrete
time, we can assume Ts = 1 with no loss of generality and so we can write
simply:

xτ[n ] = x (n +τ)

We know from Section 9.7.2 that the “ideal” way to obtain xτ[n ] from
x [n ] is to use a fractional delay filter:

xτ[n ] = dτ[n ] ∗x [n ]

where Dτ(e jω) = e jωτ. We have seen that the problem with this approach is
that Dτ(e jω) is an ideal filter, and that its impulse response is a sinc, whose
slow decay leads to very poor FIR approximations. An alternative approach
relies on the local interpolation techniques we saw in Section 9.4.2. Suppose
2N+1 samples of x [n ] are available around the index n =n 0; we could easily
build a local continuous-time interpolation around n 0 as

x̂ (n 0; t ) =
N∑

k=−N

x [n 0−k ]L(N )k (t ) (12.38)
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where L(N )k (t ) is the k -th Lagrange polynomial of order 2N defined in (9.14).
The approximation

x̂ (n 0; t )≈ x (n 0+ t )

is good, at least, over a unit-size interval centered around n 0, i.e. for |t | ≤ 1/2
and therefore we can obtain the fractionally delayed signal as

xτ[n 0] = x̂τ(n 0;τ) (12.39)

as shown in Figure 12.27 for N = 1 (i.e. for a three-point local interpolation).

1

2

3

−1

0 1−1

�

�

�

��

τ

Figure 12.27 Local interpolation around n 0 = 0 and Ts = 1 for time lag compensa-
tion. The Lagrange polynomial components are plotted as dotted lines. The dashed
lines delimit the good approximation interval. The white dot is the fractionally de-
layed sample for n =n 0.

Equation (12.39) can be rewritten in general as

xτ[n ] =
N∑

k=−N

x [n −k ]L(N )k (τ) = d̂τ[n ] ∗x [n ] (12.40)

which is the convolution of the input signal with a (2N + 1)-tap FIR whose
coefficients are the values of the 2N + 1 Lagrange polynomials of order 2N
computed in t = τ. For instance, for the above three-point interpolator, we
have

d̂τ[−1] =τ
τ− 1

2
d̂τ[0] =−(τ+ 1)(τ− 1)

d̂τ[1] =τ
τ+ 1

2

The resulting FIR interpolators are expressed in noncausal form purely out
of convenience; in practical implementations an additional delay would
make the whole processing chain causal.



Design of a Digital Communication System 361

The fact that the coefficients d̂τ[n ] are expressed in closed form as a
polynomial function of τ makes it possible to efficiently compensate for a
time-varying delay by recomputing the FIR taps on the fly. This is actually
the case when we need to compensate for a frequency drift between trans-
mitter and receiver, i.e. we need to resample the input signal. Suppose that,
by using the techniques in the previous Section, we have estimated that the
actual sampling frequency is either higher or lower than the nominal sam-
pling frequency by a factor β which is very close to 1. From the available
samples x [n ] = x (nTs )we want to obtain the signal

xβ [n ] = x

�
nTs

β

�
using discrete-time processing only. With a simple algebraic manipulation
we can write

xβ [n ] = x

�
nTs −n

1−β
β

Ts

�
= x (nTs −nτTs ) (12.41)

Here, we are in a situation similar to that of Equation (12.37) but in this case
the delay term is linearly increasing with n . Again, we can assume Ts = 1
with no loss of generality and remark that, in general, β is very close to one
so that it is

τ=
1−β
β
≈ 0

Nonetheless, regardless of how small τ is, at one point the delay term nτ
will fall outside of the good approximation interval provided by the local
interpolation scheme. For this, a more elaborate strategy is put in place,
which we can describe with the help of Figure 12.28 in which β = 0.82 and
therefore τ≈ 0.22:

1. We assume initial synchronism, so that xβ [0] = x (0).

2. For n = 1 and n = 2, 0< nτ< 1/2; therefore xβ [1] = xτ[1] and xβ [2] =
x2τ[2] can be computed using (12.40).

3. For n = 3, 3τ > 1/2; therefore we skip x [3] and calculate xβ [3] from a
local interpolation around x [4]: xβ [3] = x ′τ[4] with τ′ = 1− 3τ since
|τ′|< 1/2.

4. For n = 4, again, the delay 4τmakes xβ [4] closer to x [5], with an offset
of τ′ = 1− 4τ so that |τ′|< 1/2; therefore xβ [4] = x ′τ[5].
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Figure 12.28 Sampling frequency reduction (Ts = 1, β = 0.82) in the discrete-time
domain using a programmable fractional delay; white dots represent the resampled
signal.

In general the resampled signal can be computed for all n using (12.40) as

xβ [n ] = xτn [n +γn ] (12.42)

where

τn = frac
�

nτ+
1

2

�
− 1

2
(12.43)

γn =
�

nτ+
1

2

�
(12.44)

It is evident that, τn is the quantity nτ “wrapped” over the [−1/2,1/2] inter-
val(6) while γn is the number of samples skipped so far. Practical algorithms
compute τn and (n +γn ) incrementally.

Figure 12.29 shows an example in which the sampling frequency is too
slow and the discrete-time signal must be resampled at a higher rate. In the
figure, β = 1.28 so that τ≈−0.22; the first resampling steps are:

1. We assume initial synchronism, so that xβ [0] = x (0).

2. For n = 1 and n = 2, −1/2 < nτ; therefore xβ [1] = xτ[1] and xβ [2] =
x2τ[2] can be computed using (12.40).

3. For n = 3, 3τ<−1/2; therefore we fall back on x [2] and calculate xβ [3]
from a local interpolation around x [2] once again: xβ [3] = x ′τ[2] with
τ′ = 1+ 3τ and |τ′|< 1/2.

(6)The frac function extracts the fractionary part of a number and is defined as frac(x ) =
x −�x �.
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Figure 12.29 Sampling frequency increase (Ts = 1, β = 1.28) in the discrete-time
domain using a programmable fractional delay.

4. For n = 4, the delay 4τ makes xβ [4] closer to x [3], with an offset of
τ′ = 1+ 4τ so that |τ′|< 1/2; therefore xβ [4] = x ′τ[5].

In general the resampled signal can be computed for all n using (12.40) as

xβ [n ] = xτn [n −γn ] (12.45)

where τn and γn are as in (12.43) and (12.44).

Nonlinearity. The programmable delay is inserted in a PLL-like loop as
in Figure 12.30 where � {·} is a processing block which extracts a suitable
sinusoidal component from the baseband signal.(7) Hypothetically, if the
transmitter inserted an explicit sinusoidal component p [n ] in the baseband
with a frequency equal to the baud rate and with zero phase offset with re-

ŝ (t ) D̂τ(z ) Demod � b̂ [n ]

� N ↓ � {·}
τn ,γn

Figure 12.30 A truly digital PLL for timing recovery.

(7)Note that timing recovery is performed in the baseband signal since in baseband every-
thing is slower and therefore easier to track; we also assume that equalization and carrier
recovery proceed independently and converge before timing recovery is attempted.
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spect to the symbol times, then this signal could be used for synchronism;
indeed, from

p [n ] = sin

�
2π fb

Fs
n

�
= sin

�2π

K
n
�

we would have pK D [n ] = 0. If this component was present in the signal,
then the block � {·} would be a simple resonator� with peak frequencies
atω=±2π/K , as described in Section 7.3.1.

Now, consider more in detail the baseband signal b [n ] in (12.4); if we
always transmitted the same symbol a , then b [n ] = a

∑
i g [n − i K ] would

be a periodic signal with period K and, therefore, it would contain a strong
spectral line at 2π/K which we could use for synchronism. Unfortunately,
since the symbol sequence a [n ] is a balanced stochastic sequence we have
that:

E
�
b [n ]

	
= E[a [n ]]

∑
i

g [n − i K ] = 0 (12.46)

and so, even on average, no periodic pattern emerges.(8) The way around
this impasse is to use a fantastic “trick” which dates back to the old days
of analog radio receivers, i.e. we process the signal through a nonlinearity
which acts like a diode. We can use, for instance, the square magnitude
operator; if we process b [n ] with this nonlinearity, it will be

E
���b [n ]��2
=∑

h

∑
i

E
�

a [h]a ∗[i ]
	

g [n −hK ]g [n − i K ] (12.47)

Since we have assumed that a [n ] is an uncorrelated i.i.d. sequence,

E
�

a [h]a ∗[i ]
	
=σ2

a δ[h − i ]

and, therefore,

E
�� �b [n ]�	=σ2

a

∑
i

�
g [n − i K ]

�2 (12.48)

The last term in the above equation is periodic with period K and this means
that, on average, the squared signal contains a periodic component at the
frequency we need. By filtering the squared signal through the resonator

above (i.e. by setting � �x [n ]
�
=� ���x [n ]��2�), we obtain a sinusoidal com-

ponent suitable for use by the PLL.

(8)Again, a rigorous treatment of the topic would require the introduction of cyclostation-
ary analysis; here we simply point to the intuition and refer to the bibliography for a
more thorough derivation.
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Further Reading

Of course there are a good number of books on communications, which
cover the material necessary for analyzing and designing a communica-
tion system like the modem studied in this Chapter. A classic book pro-
viding both insight and tools is J. M. Wozencraff and I. M. Jacobs’s Prin-
ciples of Communication Engineering (Waveland Press, 1990); despite its
age, it is still relevant. More recent books include Digital Communications
(McGraw Hill, 2000) by J. G. Proakis; Digital Communications: Fundamen-
tals and Applications (Prentice Hall, 2001) by B. Sklar, and Digital Commu-
nication (Kluwer, 2004) by E. A. Lee and D. G. Messerschmitt.

Exercises

Exercise 12.1: Raised cosine. Why is the raised cosine an ideal filter?
What type of linear phase FIR would you use for its approximation?

Exercise 12.2: Digital resampling. Use the programmable digital de-
lay of Section 12.4.2 to design an exact sampling rate converter from CD to
DVD audio (Sect. 11.3). How many different filters hτ[n ] are needed in total?
Does this number depend on the length of the local interpolator?

Exercise 12.3: A quick design. Assume the specifications for a given
telephone line are f min = 300 Hz, f max = 3600 Hz, and a SNR of at least
28 dB. Design a set of operational parameters for a modem transmitting on
this line (baud rate, carrier frequency, constallation size). How many bits
per second can you transmit?

Exercise 12.4: The shape of a constellation. One of the reasons for
designing non-regular constellations, or constellation on lattices, different
than the upright square grid, is that the energy of the transmitted signal is di-
rectly proportional to the parameterσ2

α as in (12.10). By arranging the same
number of alphabet symbols in a different manner, we can sometimes re-
duceσ2

α and therefore use a larger amplification gain while keeping the total
output power constant, which in turn lowers the probability of error. Con-
sider the two 8-point constellations in the Figure 12.12 and Figure 12.13 and
compute their intrinsic power σ2

α for uniform symbol distributions. What
do you notice?


