
Multipub: managing a LATEX

book manuscript for

concurrent print and

electronic formats

Paolo Prandoni

November 26, 2015

1 Introduction

So, you just put the finishing touches to your
LATEX manuscript, which compiles to a beauti-
ful camera-ready PostScript file: your book is
finally complete! ...or is it? Aren’t you forget-
ting about the electronic version of the book?

If you are a novelist, no problem, there are
plenty of tools to convert “pure text” into vir-
tually any ebook format. Authors of technical
and mathematical texts, however, are faced
with the challenge of mathematical formulas
and graphic illustrations. The problem with for-
mulas is due to the reflowable nature of ebook
content: when the electronic format has a pre-
arranged, fixed layout (as in PDF documents,
for instance), equations can be easily rendered
as images and everything looks nice; but when
the document or the font sizes are allowed
to change, a mechanism to render the math
on the fly becomes necessary. In the past,
when reflowable content basically meant HTML
pages, the de-facto solution was to pre-render
all mathematical formulas as bitmap images;
however this creates numerous problems, from
inline formulas that do not align properly to
equations that do not rescale when the sur-
rounding font size is varied.

Pre-rendering is also necessary if you have de-
fined your illustrations in PostScript within your
manuscript; since figures are floating freely
within the page, this is much less of a issue
(although resizing may still be problematic).

While pre-rendering of images can be accept-
able, pre-rendering of math is not an option, at
least in my opinion; I want fully reflowable math
in my ebooks.

In the rest of this memo I will detail the steps I
put in place to manage the concurrent PDF and
eBook rendering of a LATEX manuscript. Start-
ing with a document in LATEX, the objective is to
have an efficient workflow that, based on a sin-
glemaster manuscript, can produce both a PDF
and a reflowable version of the text. Chang-
ing the compilation target should not require
any manual change in the main text other than
choosing the compilation target; obviously, dif-
ferent style files can (and shoud) be included
according to the target.

To recap, the goals of the toolchain are:� compilation to PDF format for printing� compilation to electronic format with
MathML support for modern e-readers and
web browsers.

2 Choosing the Links in the

Toolchain

Executive summary:� EPUB is the chosen eBook format� MathML will be used for formulas� LateXML will be used for EPUB compila-
tion

The longer story is like so:

2.1 Render Mathematical Formu-
las and eReaders

Bitmap formulas look awful, so the only two
approaches to reflowable, good quality math
available today for browsers and eReaders
are MathML and MathJax. MathML is a stan-
dard supported natively by most browsers (al-
though, surprisingly, not by Chrome) in which
equations are encoded in XML and rendered
on the fly. The second approach, MathJax, al-
lows for math to be written in a variety of for-

mats (including LATEX and MathML itself) and
the rendering is performed by Javascript; ob-
viously, this requires a browser (or a reader)
equipped with Javascript and sufficient com-
putational power. MathML is “understood” by
MathJax, so I chose MathML.

2.2 eReaders and eBook Formats

Today, the most common devices to read
eBooks are:

1. Kindle Paperwhite (or similar e-paper de-
vices)

2. iPad or Android tablets

3. PCs

On the other hand, there are about thirty eBook
formats in use worldwide. Many of these are
either specialized formats (e.g. comic books) or
proprietary formats (e.g. Sony reader format).
The most important items for our purposes are:� EPUB: an open standard now in its 3rd

version based on HTML+CSS. Supports

MathML and Javascript.� iBook: a non-standard EBOOK subset by
Apple; not compatible with EPUB readers.
Supports MathML and Javascript.� AZW: Kindle’s proprietary format (now in
version 8). Does NOT support MathML.� PDF: although not an ebook standard per
se, still very relevant. Supports Javascript.

Each standard should be evaluated according
to two independent criteria: how beautiful the
books look and what devices these book can be
read on; additionally, one should consider DRM
and marketing channels.� iBook produces very high quality books

since the books only work on Apple de-
vices and therefore the environment is
fully controlled; however, books only work
on Apple devices.� AZW works natively on Kindle but Ama-
zon has Kindle reader software for all plat-
forms (including Apple devices)� EPUB is an open format and readers exist
for tablets and PCs (but not for the Kin-

dle). However, your mileage may vary
with each reader since the standard is
open and potentially very broad.� PDFs are supported by all devices but re-
flowing is not possible.

AZW (the Kindle format used by the "classic"
Kindles) does not support MathML so equations
must be rendered as graphics. However, and
this is critical, the AZW format does not sup-
port inline graphics, so inline equations look ter-
rible. For classic Kindles, the best approach is
simply to produce a fixed-layout PDF with a size
compatible with the Kindle screen. (This is what
Amazon does already for existing textbooks).

iBook is a closed standard and Apple handles
the sales channel with an iron fist. Since iBook
is basically a proprietary dialect of EPUB and
since excellent EPUB readers exist for iPad,
iBook would be difficult to recommend over
EPUB.

EPUB therefore seems to be the obligatory
choice although, being an open standard, one
should not expect the flawless level of device
support offered by the proprietary formats.

2.3 LATEX Compilation

Since the chosen target format, EPUB, is based
on XHTML, the first order of business is finding a
good tool to convert LATEX to HTML. Since TEX is
a Turing-complete programming language, con-
version is anything but trivial and, indeed, inde-
pendently of the chosen tool, there will be lim-
itations on the external packages that can be
used in a convertible a manuscript.

Amongst the available conversion tool, I chose
LaTeXML [?] since it formats equations in
MathML and it supports a reasonable number
of external packages via so called “bindings”
(see Figure 1 and [?] for the up-to-date list). A
binding is a piece of custom code that makes
the package understandable by LateXML; writ-
ing a custom binding seems to be a daunting
task so we will not attempt that here.

In Section ?? I will describe how to install the
full toolchain; a shell script for one-line compi-
lation of the manuscript for different targets is
also provided.

3 Preparing the Manuscript

The multipub package described in this section
defines three compilation targets:� PRINT: standard compilation leading to

printable (PDF) output� KINDLE: similar to PRINT, but produces a
specially-formatted PDF to fit the screen
of Kindle-like readers� EPUB: compilation with LateXML for
ebooks

These three targets can be additionally used
to conditionally include specific packages and
macros.

3.1 Conditional Compilation

Include1 the multipub package right after the
documentclass declaration in your master doc-

1I couldn’t package multipub as a style file because La-
teXML only accepts style files for which it has bindings.

ument and specify your compilation target like
so:

\documentclass[...]{...}
\input{multipub}
\multipub{TARGET}

where TARGET is one of the compilation targets
defined above. The three compilation targets
can be used to define target-specific portions
of the LATEX manuscript that will be active only
when the target is selected; for instance

\begin{PRINT}
% custom page formats for the PRINT version
\include{styles/printlayout}
\usepackage[utopia]{mathdesign}
\usepackage{pstricks}

\end{PRINT}

\begin{EPUB}
% custom page formats for the EPUB version
\include{styles/epublayout}

\end{EPUB}

3.2 External Packages

The first step in preparing a manuscript for
multi-target compilation is to make sure that
all critical packages have available La-
teXML bindings (again, see Figure 1). A crit-
ical package is a functional package that will
be needed for all compilation targets. Please
note that any package affecting the page lay-
out only (e.g. specific font packages) will be
irrelevant when compiling for the EPUB target
and so it can be conditionally included as ex-
plained above. Another exception is the inclu-
sion of PSTricks-derived packages, for which a
different strategy is provided.

3.3 File Structure for Multi-part
Documents

With multi-part documents (such as the chap-
ters in a book or different sections in a longer
text) it is often convenient to have a master
document and include the relevant files from
subfolders; e.g. if you have a book.tex mas-
ter file in the top-level directory and a series

a0size, a4, a4wide, aasms, aaspp, aastex,
acronym, ae, afterpage, alltt, amsbsy,
amscd, amsfonts, amsmath, amsopn, amsppt,
amsrefs, amssymb, amstex, amstext, amsthm,
amsxtra, apjfonts, array, avant, babel, bbm,
bbold, beton, bm, bookman, booktabs, braket,
calc, cancel, caption, ccfonts, chancery,
charter, circuitikz, cite, citesort,
cmbright, color, colordvi, colortbl,
comment, concmath, courier, crop, cropmark,
dcolumn, deluxetable, doublespace, dsfont,
ellipsis, elsart, emulateapj, emulateapj5,
enumerate, epigraph, epsf, epsfig, epstopdf,
eucal, eufrak, euler, eulervm, eurosym,
euscript, exscale, fancyhdr, fix-cm,
fixltx2e, flafter, fleqn, float, floatfig,
floatflt, floatpag, fontenc, fontspec,
footmisc, fourier, framed, fullpage,
geometry, german, graphics, graphicx,
grffile, helvet, here, hhline, html,
hyperref, hyperxmp, ifpdf, ifthen, ifvtex,
ifxetex, import, indentfirst, inputenc,
iopams, keyval, latexml, latexsym, lineno,
listings, listingsutf8, longtable, lscape,
luximono, lxRDFa, makeidx, mathpazo,
mathpple, mathptm, mathptmx, mathrsfs,
multicol, multido, multirow, nameref,
natbib, newcent, ngerman, nicefrac,
ntheorem, numprint, palatino, paralist,
parskip, pdflscape, pdfsync, pgf, pgfplots,
pifont, placeins, preview, psfig, pslatex,
pspicture, pst-grad, pst-node, pstricks,
pxfonts, relsize, revsymb, revtex, revtex4,
rotate, rotating, rsfs, scalefnt, setspace,

of subfolders containing chapters you may find
yourself writing something like:

\documentclass[...]{book}
\begin{document}

\title{My Book}
\maketitle

\include{ch01/chapter1.tex}
\include{ch02/chapter2.tex}

\end{document}

The rationale behind this file structure is to or-
ganize the material for each chapter in sepa-
rate subfolders, possibly creating another level
of folders in each subfolder to collect figures or
data files. The problem, however, is that if you
now, say, include a figure in a chapter file us-
ing a path relative to the chapter’s subfolder,
the figure will not be found since LATEX assumes
that all paths are relative to the master docu-
ment. To work around this problem without us-
ing absolute paths, multipub defines two spe-
cific macros. In your master document, use the
\includefile macro to include chapters, sep-

arating the path from the file name:

\documentclass[...]{book}
...
\includefile{ch01}{chapter1.tex}
\includefile{ch02}{chapter2.tex}

then, in each included file, you can use the
\localpath macro to include files relative to
the included file itself. For example, as-
sume the folder ch01/figs/ exists; then in
chapter1.tex you can use things like:

\includegraphics{\localpath{figs/fig.eps}}

and the document will compile. Using the
\includefile macro is particularly useful with
respect to PSTricks figures, as explained in the
following section.

As a final note, do NOT use underscores in the
filenames or path names as this seems to con-
fuse LateXML.

3.4 Figures and PSTricks

LateXML supports picture inclusion via
\includegraphics; in other words, figures
defined as in the code snippet below should
present no problem across compilation targets:

\begin{figure}
\includegraphics{figs/figure.eps}

\end{figure}

On the other hand, although LateXML has some
basic PSTricks bindings, it certainly does not
cover the multitude of useful PSTricks-based
packages in use today. Therefore the strategy
for cross-platform compilation is the following:� in the main document folder (or in each

chapter folder) create a subfolder called
ps� isolate the PSTricks-specific code for each
figure in the tex file and save it in sep-
arate small file in the ps folder (e.g.
ps/fig3.tex)� use the \pstf macro to include the

PsTricks figure using the file name without
extension� before compiling for the EPUB target, pre-
render all figures using the provided script

For example, consider the following figure:

T0 T1

obtained with the following code:

\begin{figure}
\center
%%%% BEGIN PSTricks %%%
\savedata{\smooth}[

1.0000 1.0000 1.1579 1.0011 1.3158 1.0130 1.4737
1.6316 1.1201 1.7895 1.2408 1.9474 1.4232 2.1053
2.2632 1.9852 2.4211 2.3076 2.5789 2.6068 2.7368
2.8947 2.9824 3.0526 2.9828 3.2105 2.8418 3.3684
3.5263 2.3338 3.6842 2.0725 3.8421 1.8769 4.0000

\psset{xunit=1.8cm,yunit=0.8cm,linewidth=0.8pt}
\begin{pspicture}(-.5,-.5)(5.5,3.5)

\pscustom{
\dataplot[plotstyle=curve,linewidth=1.1pt]{\smooth}
\gsave
\psline(4,0) \psline(1,0)
\fill[fillstyle=solid,fillcolor=lightgray]
\grestore}

\psline{->}(0,-.1)(0,3.4)
\psline{->}(-.1,0)(5.4,0)
\rput[t](1,-.1){T_0}
\rput[t](4,-.1){T_1}
\psline[linestyle=dashed]{-}(0.5,1.983)(4.5,1.983)

\end{pspicture}
%% END PSTricks %%%%

\end{figure}

Cut all the lines between the BEGIN PSTricks
and END PSTricks markers and save them as
the file ps/fig1.tex. Now you can include the
figure with

\begin{figure}
\pstf{fig1}

\end{figure}

When compiling for the PRINT target, the macro

will include the pre-rendered version of the fig-
ure if it is available, otherwise it will include the
PSTricks code directly (obviously in this case
the PRINT version must include all necessary
PSTricks packages; you can do that within the
conditional inclusion section in the preamble of
the document). When compiling for EPUB the
pre-rendered figures must be available and a
compilation error is raised otherwise.

4 Compilation

4.1 Setting Up the Toolchain

If you start from a fresh Linux installation2 (e.g.
Ubuntu), first install the necessary LATEX compo-
nents:

2Unfortunately, LaTeXML is written in Perl; installing Perl
under Windows is far from trivial and therefore the best way
to handle multi-format compilation under Windows is to in-
stall a Linux virtual machine; VirtualBox [?], for instance, is
a free and efficient solution that interfaces easily with the
host OS. In the following, I will detail the installation process
for the Linux environment only.

> apt-get install texlive
> apt-get install texlive-latex-extra
> apt-get install latexml

4.2 PRINT and KINDLE Versions

Compilation in these cases is a simple LATEX→
dvips → ps2pdf sequence. Using the provided
script, simply type

> mpbuild PRINT filename

to obtain the final PDF document.

4.3 EPUB Version

EPUB compilation takes place in two steps, first
the LATEX manuscript is converted to XML and
then the XML is converted to HTML; both oper-
ation are performed by LateXML. . In my case,
the commands to perform the conversion are
simply

> latexml --dest=book.xml book.tex
> latexmlpost --format=xhtml --dest=book.xhtml --pmml

The XHTML files can be browsed with a web
browser or imported into an e-reader.

4.4 KINDLE Version

5 Windows Setup

sudo apt-get install texlive sudo apt-get install
latex sudo apt-get install latex sudo apt-get in-
stall latexml cd book ls latex book.tex sudo apt-
get install lighttpd

