
Multipub: Managing a LATEX

Manuscript for Concurrent Print

and Electronic Formats

Paolo Prandoni

January 18, 2016

Abstract

The following document describes a set of
tools and the workflow to generate multiple pub
lication formats from a single LATEX manuscript;
targeted formats are a printerfriendly PDF, a
PDF version for smallscreen eReaders such as
the Kindle, an HTML version and an EPUB3 ver
sion. Multitarget compilation is achieved us
ing a variety of applications, including LATEXML,
a style file and some custom scripts[1]; installa
tion of the toolchain is described in detail for a
Linux machine. With a few tweaks to your origi

nal LATEXdocument’s structure and inclusions, no
changes to the source manuscript are required
to switch between targets.

1 Introduction

So, you just put the finishing touches to your LATEX
manuscript, which compiles to a beautiful cameraready
PDF file: your book is finally complete... or is it?
Aren’t you forgetting about the electronic version of the
book?

While there are plenty of applications that can con
vert puretext manuscripts into one of the many ebook
formats, there are few complete toolchains that prop
erly handle works containing mathematical formulas and
drawings. Most attempts to include math into HTML
pages rely on bitmap graphics to encapsulate formulas
as images. However both HTML and ebooks are reflow
able, i.e. there is no fixed page formats and the font
size can be changed by the user; therefore, prerendered
bitmap images either scale rather badly or do no fit at all.
Similar problems affect illustrations, especially figures
generated programmatically by using PostScript primi
tives (or PsTricks).

In the rest of this memo I will describe the toolchain
and the workflow I use to manage the concurrent PDF
and eBook rendering of LATEX manuscripts. Starting with
a properly prepared master document in LATEX, a simple
compilation script can be used to generate a printable
PDF, a PDF for the Kindle, an HTML version and an EPUB
version. Changing the compilation target does not re
quire any editing of the master text but different style files
can be conditionally included according to target. For a
(verbose) explanation of the decision process that went
into the selection of the tools, see Appendix A.

The main link in the toolchain is LATEXML [3], that will be
used to compile LATEX to XHTML; however, a set compi
lation scripts is provided so that all the gory details are
conveniently hidden [1]. The full toolchain uses a variety
of thirdparty applications besides LATEXML, so it is not
easily portable1. I will assume a Linux environment from
now on, and details on how to set up your environment
are described in Section 4. For other operating systems,
I recommend installing a virtual machine such as Virtu
alBox [6], install a quick and easy Linux distribution and
proceed from there.

1For instance, LATEXML is written in Perl and installing Perl under
Windows is far from trivial.

2 Preparing the Manuscript

The tools described in this document can generate four
compilation targets:

• PRINT: standard compilation leading to a printable
PDF output.

• KINDLE: speciallyformatted PDF to fit the screen
of small epaper readers like the Kindle.

• HTML: compilation with LATEXML for electronic
publishing (browsers with MathML or MathJax
support).

• EPUB: EPUB3 version for ereaders.

After having installed the required files as described in
Section 4, multitarget compilation is achieved via the
following steps:

1. include the multipub package in the master LATEX
document

2. conditionally include external packages using
multipub’s targetspecific macros

3. (optionally) set up the file structure for multifile
documents

4. handle the PsTricks illustrations

5. compile via the provided mpbuild shell script.

2.1 The multipub Package

To enable multitarget compilation, include2 the
multipub package right after the documentclass decla
ration in your master document and specify your com
pilation target immediately below; then, just before
\begin{document}, invoke the \mutipubbegin macro
like so:

\documentclass[...]{...}

\input{multipub}

\multipub{KINDLE}

...

...

\multipubbegin

\begin{document}

...

All target names can be used to define conditional por
tions of the LATEX manuscript that will be active only when
the target is selected; for instance

2I couldn’t package multipub as a style file because LATEXML only
accepts style files for which it has bindings.

\begin{PRINT}

% custom page formats for the PRINT version

\include{styles/printlayout}

\usepackage[utopia]{mathdesign}

\usepackage{pstricks}

\end{PRINT}

\begin{EPUB}

% custom page formats for the EPUB version

\include{styles/epublayout}

\end{EPUB}

2.2 External Packages

Since we’ll be using LATEXML, the first step in preparing
a manuscript for electronic publishing is to make sure
that all critical packages have available LATEXML bind
ings (see Figure 1). A critical package is a functional
package that will be needed for all compilation targets.
Please note that any package affecting the page layout
only (e.g. specific font packages) will be irrelevant when
compiling for HTML or EPUB and so it can be condition
ally included for PRINT or KINDLE as explained above.
Another exception is the inclusion of PSTricksderived
packages, for which a different strategy is provided be

low.

2.3 File Structure for MultiFile Docu
ments

With multipart documents (such as the chapters in a
book or different sections in a longer text) it is often con
venient to have a master document and include the rel
evant files from subfolders; e.g. if you have a book.tex
master file in the toplevel directory and a series of sub
folders containing chapters you may find yourself writing
something like:

\documentclass[...]{book}

...

\begin{document}

\title{My Book}

\maketitle

\include{ch01/chapter1.tex}

\include{ch02/chapter2.tex}

\end{document}

The rationale behind this file structure is to organize the

a0size, a4, a4wide, aasms, aaspp, aastex, acronym,

ae, afterpage, alltt, amsbsy, amscd, amsfonts,

amsmath, amsopn, amsppt, amsrefs, amssymb, amstex,

amstext, amsthm, amsxtra, apjfonts, array, avant,

babel, bbm, bbold, beton, bm, bookman, booktabs,

braket, calc, cancel, caption, ccfonts, chancery,

charter, circuitikz, cite, citesort, cmbright,

color, colordvi, colortbl, comment, concmath,

courier, crop, cropmark, dcolumn, deluxetable,

doublespace, dsfont, ellipsis, elsart, emulateapj,

emulateapj5, enumerate, epigraph, epsf, epsfig,

epstopdf, eucal, eufrak, euler, eulervm, eurosym,

euscript, exscale, fancyhdr, fix-cm, fixltx2e,

flafter, fleqn, float, floatfig, floatflt,

floatpag, fontenc, fontspec, footmisc, fourier,

framed, fullpage, geometry, german, graphics,

graphicx, grffile, helvet, here, hhline, html,

hyperref, hyperxmp, ifpdf, ifthen, ifvtex,

ifxetex, import, indentfirst, inputenc, iopams,

keyval, latexml, latexsym, lineno, listings,

listingsutf8, longtable, lscape, luximono, lxRDFa,

makeidx, mathpazo, mathpple, mathptm, mathptmx,

mathrsfs, multicol, multido, multirow, nameref,

natbib, newcent, ngerman, nicefrac, ntheorem,

numprint, palatino, paralist, parskip, pdflscape,

pdfsync, pgf, pgfplots, pifont, placeins, preview,

psfig, pslatex, pspicture, pst-grad, pst-node,

pstricks, pxfonts, relsize, revsymb, revtex,

revtex4, rotate, rotating, rsfs, scalefnt,

setspace, slashed, srcltx, subfig, subfigure,

subfloat, supertabular, svg, tabularx, textcomp,

texvc, theorem, threeparttable, tikz-3dplot,

tikz, times, tocbibind, transparent, txfonts,

type1cm, ulem, units, upgreek, upref, url,

material for each chapter in separate subfolders, possi
bly creating another level of folders in each subfolder to
collect figures or data files. The problem, however, is
that if you now, say, include a figure in a chapter file us
ing a path relative to the chapter’s subfolder, the figure
will not be found since LATEX assumes that all paths are
relative to the master document. To work around this
problem without using absolute paths, multipubdefines
two specific macros. In your master document, use the
\includefilemacro to include chapters, separating the
path from the file name:

\documentclass[...]{book}

...

\includefile{ch01}{chapter1.tex}

\includefile{ch02}{chapter2.tex}

then, in each included file, you can use the \localpath
macro to include files relative to the included file itself.
For example, assume the folder ch01/figs/ exists; then
in chapter1.tex you can use things like:

\includegraphics{\localpath{figs/fig.eps}}

and the document will compile. Using the
\includefile macro is critical with respect to

PSTricks figures, as explained in the following sec
tion.

As a final note, do NOT use underscores in the filenames
or path names as this seems to confuse LATEXML.

2.4 Figures and PSTricks

LATEXML supports picture inclusion via
\includegraphics; in other words, figures de
fined as in the code snippet below should present no
problem across compilation targets:

\begin{figure}

\includegraphics{figs/figure.eps}

\end{figure}

On the other hand, although LATEXML has some basic
PSTricks bindings, it certainly does not cover the mul
titude of useful PSTricksbased packages in use today.
Therefore the strategy for multitarget compilation is the
following:

• in the main document folder (or in each chapter
folder) create a subfolder called ps

• isolate the PSTricksspecific code for each figure
in the tex file and save it in separate small file in
the ps folder (e.g. ps/fig3.tex)

• use the \pstfmacro to include the PsTricks figure
using the file name without extension

When compiling for the EPUB target, the mpbuild com
pilation script will prerender all the figures in all the
ps subfolders of your manuscript.

For example, consider the following figure:

T0 T1

obtained with the following code:

\begin{figure}

\center

%%%% BEGIN PSTricks %%%

\savedata{\smooth}[

1.0000 1.0000 1.1579 1.0011 1.3158 1.0130 1.4737 1.0484

1.6316 1.1201 1.7895 1.2408 1.9474 1.4232 2.1053 1.6777

2.2632 1.9852 2.4211 2.3076 2.5789 2.6068 2.7368 2.8445

2.8947 2.9824 3.0526 2.9828 3.2105 2.8418 3.3684 2.6079

3.5263 2.3338 3.6842 2.0725 3.8421 1.8769 4.0000 1.8000]

\psset{xunit=1.8cm,yunit=0.8cm,linewidth=0.8pt}

\begin{pspicture}(-.5,-.5)(5.5,3.5)

\pscustom{

\dataplot[plotstyle=curve,linewidth=1.1pt]{\smooth}

\gsave

\psline(4,0) \psline(1,0)

\fill[fillstyle=solid,fillcolor=lightgray]

\grestore}

\psline{->}(0,-.1)(0,3.4)

\psline{->}(-.1,0)(5.4,0)

\rput[t](1,-.1){T_0}

\rput[t](4,-.1){T_1}

\psline[linestyle=dashed]{-}(0.5,1.983)(4.5,1.983)

\end{pspicture}

%% END PSTricks %%%%

\end{figure}

Cut all the lines between the BEGIN PSTricks and
END PSTricks markers and save them as the file
ps/fig1.tex. Now you can include the figure
with

\begin{figure}

\pstf{fig1}

\end{figure}

When compiling for the PRINT target, the macro will in
clude the prerendered version of the figure if it is avail
able, otherwise it will include the PSTricks code directly
(obviously in this case the PRINT version must include
all necessary PSTricks packages; you can do that within
the conditional inclusion section in the preamble of the
document). When compiling for EPUB the prerendered

figuresmust be available and a compilation error is raised
otherwise.

Normally, the size of the figures is automatically adjusted
to the compilation target; however, the \pstf macro
takes an optional argument that can be used to specify
the width of the included prerendered figures.

3 Compilation

Compilation is performed using the provided mpbuild
script. In the following examples assume you’re compil
ing the mybook.texmaster file.

3.1 PRINT Version

> mpbuild PRINT mybook

Compilation in this case is a simple LATEX→ dvips →
ps2pdf sequence and it will generate a mybook.pdf out
put.

3.2 KINDLE Version

> mpbuild KINDLE mybook

The KINDLE version also produces a mybook.pdf file.
In this case, the following typesetting parameters are
modified:

• the page size is scaled to an 800x600 aspect ratio,
with minimal borders

• the font is changed to a sansserif family (epi
grafica)

• the math font is scaled down

Because of the small page size in the KINDLE version,
please bear the following in mind:

• “long” equations will have to be manually split
across lines. Use the conditional inclusion macros
to provide alternate versions of long equations.

• when including figures, always specify the size
in terms of textwidth, in order to automatically
rescale the graphics.

3.3 HTML Version

> mpbuild HTML mybook [destination]

HTML compilation takes place in two steps, first the LATEX
manuscript is converted to XML and then the XML is
converted to HTML; both operation are performed by
LateXML. Important notes:

• the script (optionally) prerenders all the PsTricks
figures in the manuscript’s file tree;

• if specified, the resulting XHTML files will be
placed in the destination folder;

• the main file will be mybook.xhtml

• the look and feel of the resulting web pages
can be controlled by setting up a CSS file called
mybook.css in the same folder as the main LATEX
file; see Section 3.5 for a brief discussion.

3.4 EPUB Version

> mpbuild EPUB mybook

EPUB compilation requires first to compile the
manuscript as HTML, and then to package all the nec
essary files into an mybook.epub file. The conver
sion HTML to EPUB is performed using Calibre. As
in the HTML case, you can control the look and feel
of the resulting eBook by providing a custom CSS
mybook.css.

3.5 Custom CSS

The HTML produced by LATEXML contains CSS markers
for all the meaningful parts of the text. Most of the
time, the CSS class names are related to the LATEX sec
tioning names, prepended by the suffix ltx_. So, for
instance, you can change the attributes of a section ti
tle by specifying a set of CSS directives for the class
.ltx_title_section:

.ltx_title_section {

background: lightgray;

padding: 10px 0px 10px 10px;

border-radius: 6px;

}

or you can change captions like so:

.ltx_caption {

width: 80%;

margin: auto;

font-style: italic;

}

Changes in the style once again address the relevant CSS
tag; for instance, to eliminate the initial indentation in
paragraphs use

.ltx_para > .ltx_p:first-child {

text-indent: 0;

}

Please look at the provided examples and consult the
LATEXML documentation for more details.

4 Setting Up the Toolchain

If you start from a fresh Linux installation (e.g. Ubuntu),
first install TEX and some additional components (do all
these steps as superuser, obviously):

> apt-get install texlive

> apt-get install texlive-latex-extra

> apt-get install texlive-fonts-extra

> apt-get install texlive-lang-greek

> apt-get install texlive-generic-extra

In order to have uptodate EPUB support, we need to
compile LATEXML from the Perl sources. First install the
necessary dependencies:

> apt-get install xzdec

> apt-get install libxml2-dev

> apt-get install libxslt1-dev

> apt-get install zlib1g-dev

> apt-get install lib32z1-dev

> apt-get install libgdbm-dev

Install the necessary Perl libraries using cpan (you may
need to configure cpan on first run, all default options
are OK):

> cpan install XML::LibXML

> cpan install XML::LibXSLT

> cpan install Image::Size

> cpan install JSON::XS

> cpan install Archive::Zip

> cpan install File::Which

Now download the LATEXML sources, unzip the archive
and compile:

> mkdir latexml

> cd latexml

> git clone https://github.com/brucemiller/LaTeXML.git

> cd LaTeXML

> perl Makefile.PL

> make

> make test

> make install

Finally, for EPUB support, install Calibre:

> apt-get install calibre

Now download the multipub package from [1] and un
pack it somewhere in your filesystem. Make sure that the
toolbox/scripts subfolder is in your PATH by adding

the following line to your .bashrc

PATH=$PATH:<path-to-multipub-package>/toolbox/scripts/

Finally, to test the HTML compilation, you can install
a simple webserver such as lighttpd; also set your
account as a member of the www-data group:

> apt-get install lighttpd

> usermod -G www-data <your-login-name>

Now you can place the HTML files generated by
LATEXML in a subfolder of /var/www/ and browse
to your ebook at hhtp://<ip-address>/mybook/
mybook.xhtml:

> mkdir /var/www/mybook

> mpbuild HTML mybook /var/www/mybook

A Choosing the Links in the
Toolchain

This section explains the criteria behind the toolchain
selection, which resulted in

• EPUB as the chosen eBook format

• MathML for math support

• LateXML as the XHTML compiler

• Calibre for EPUB3

A.1 Render Mathematical Formulas and
eReaders

Bitmap formulas look awful, so the only two ap
proaches to reflowable, good quality math available to
day for browsers and eReaders are MathML and Math
Jax. MathML is a standard supported natively by most
browsers (although, surprisingly, not by Chrome) in
which equations are encoded in XML and rendered on
the fly. The second approach, MathJax, allows for
math to be written in a variety of formats (including
LATEX and MathML itself) and the rendering is performed

〈ϕ(n)(t), ϕ(m)(t)〉 =
π

2Ω2
N

∫
ΩN

−ΩN

e jΩ(n−m)Ts dΩ

Figure 2: Example of mathematical formula. This should
look good in all formats.

by Javascript; obviously, this requires a browser (or a
reader) equipped with Javascript and sufficient compu
tational power. MathML is “understood” by MathJax, so
I chose MathML.

A.2 eReaders and eBook Formats

Today, the most common devices to read eBooks
are:

1. Kindle Paperwhite (or similar epaper devices)

2. iPad or Android tablets

3. PCs

On the other hand, there are about thirty eBook formats
in use worldwide. Many of these are either specialized
formats (e.g. comic books) or proprietary formats (e.g.

Sony reader format). The most important items for our
purposes are:

• EPUB: an open standard now in its 3rd ver
sion based on HTML+CSS. Supports MathML and
Javascript.

• iBook: a nonstandard EBOOK subset by Ap
ple; not compatible with EPUB readers. Supports
MathML and Javascript.

• AZW: Kindle’s proprietary format (now in version
8). Does NOT support MathML.

• PDF: although not an ebook standard per se, still
very relevant. Supports Javascript.

Each standard should be evaluated according to two inde
pendent criteria: how beautiful the books look and what
devices these book can be read on; additionally, one
should consider DRM and marketing channels.

• iBook produces very high quality books since the
books only work on Apple devices and there
fore the environment is fully controlled; however,
books only work on Apple devices.

• AZW works natively on Kindle but Amazon has
Kindle reader software for all platforms (including
Apple devices)

• EPUB is an open format and readers exist for
tablets and PCs (but not for the Kindle). However,
your mileage may vary with each reader since the
standard is open and potentially very broad.

• PDFs are supported by all devices but reflowing is
not possible.

AZW (the Kindle format used by the "classic" Kindles)
does not support MathML so equations must be ren
dered as graphics. However, and this is critical, the
AZW format does not support inline graphics, so inline
equations look terrible. For classic Kindles, the best ap
proach is simply to produce a fixedlayout PDF with a
size compatible with the Kindle screen. (This is what
Amazon does already for existing textbooks).

iBook is a closed standard and Apple handles the sales
channel with an iron fist. Since iBook is basically a propri
etary dialect of EPUB and since excellent EPUB readers
exist for iPad, iBook would be difficult to recommend
over EPUB.

EPUB therefore seems to be the obligatory choice al
though, being an open standard, one should not expect
the flawless level of device support offered by the pro
prietary formats.

A.3 LATEX Compilation

Since the chosen target format, EPUB, is based on
XHTML, the first order of business is finding a good tool
to convert LATEX to HTML. Since TEX is a Turingcomplete
programming language, conversion is anything but trivial
and, indeed, independently of the chosen tool, there will
be limitations on the external packages that can be used
in a convertible a manuscript.

Amongst the available conversion tool, I chose
LATEXML [3] since it formats equations in MathML and
it supports a reasonable number of external packages via
so called “bindings” (see Figure 1 and [4] for the up
todate list). A binding is a piece of custom code that
makes the package understandable by LateXML; writing
a custom binding seems to be a daunting task so we will
not attempt that here.

LATEXML proceeds in two passes: first it converst LATEX
to XML, then it formats the XML via style sheets into
XHTML.

A.4 Conversion to EPUB

The EPUB format is simply a compressed archive con
taining a set of XHTML pages (the chapters of the book)
plus CSS files and a variety of indexing files. Unfortu
nately, direct conversion to EPUB from LATEXML’s XML
file is still experimental and undocumented. Until this
changes, I found that the most robust way to package
the XHTML file into an EPUB compliant document is to
use Calibre’s ebook-convert utility [7]

References

[1] http://www.sp4comm.org/multipub

[2] http://idpf.org/epub

[3] http://dlmf.nist.gov/LaTeXML/

[4] http://dlmf.nist.gov/LaTeXML/manual/
included.bindings/

[5] https://www.ctan.org/pkg/dsptricks

[6] https://www.virtualbox.org/

[7] http://calibre-ebook.com/

